CHAPTER 4

SCHEDULING OF REPETITIVE PROJECTS

This chapter introduces new techniques for scheduling of multiple and linear projects that involve a number of repetitive activities. These techniques include: the summary diagrams and the line of balance (LOB). Examples of these projects are highways, pipelines, and high-rise buildings. The objective of the LOB technique is to determine a balanced mix of resources and synchronize their work so that they are fully employed and non-interrupted. As such, it is possible to benefit from repetition, and the crews will likely be able to spend less time and money on later units once they develop a learning momentum. Another benefit of the LOB technique is its interesting representation of the schedule, given the large amount of data for the repetitive units. This chapter introduces the summary diagrams calculations presented on AON networks and integrated CPM-LOB calculations that combine the benefits of CPM network analysis of a single unit and the LOB analysis and representation.

4.1 Linear Projects

Linear projects are projects involving repetitive activities. They take their name from either: (a) involving several uniform units of work such as multiple houses or typical floors in a building; or (b) being geometrically linear such as highway, pipeline, and utility projects. In both categories, however, some non-typical units could be involved such as a non-typical floor in a high-rise building or a non-standard station in a highway project. The activities in these non-typical units may certainly involve higher or lower quantity of work than their counterparts in the typical units. To simplify the scheduling
task in these situations, we can assume that the project is comprised of (n) typical units, with the activities in each unit having average quantity of the work in all units. As the number of units in a project increases, eventually the project becomes more complex and more challenging.

4.2 Resource-Driven Scheduling

As we have seen in network scheduling, the basic inputs to critical-path analysis are the individual project activities, their durations, and their dependency relationships. Accordingly, the forward-path and backward-path calculations determine the start and finish times of the activities. The CPM algorithm, therefore, is duration-driven. Activities’ durations here are function of the resources that are required (rather than available) to complete each activity. The CPM formulation, therefore, assumes that resources are in abundance and cannot be used to determine what resources are needed in order to meet known project deadline duration.

Resource-driven scheduling, on the other hand, is different and is more focused on resources. Its objective is to schedule the activities (determine their start and finish times) so that a project deadline is met using predefined resource availability limits. The line of balance technique dealt with in this chapter is a resource-driven schedule.

4.3 Line of Balance (LOB)

4.3.1 Basic Representation

Let’s consider a medium-sized high-rise building of 40 typical floors. The construction of each typical floor involves various inter-related activities. If a CPM network is to be developed for the whole project, certainly it will be so complex and will be composed of copies of the activities in a single floor. A Bar Chart of the project will still be so complex and will not serve the purpose of a good communication tool between planners and execution personnel.
A schedule representation that suits projects with repetitive activities is shown in Figure 4.1 between time on the horizontal axis and units on the vertical axis. This representation shows the following information:

- Each sloping bar represents one activity (A, B, C, or D) in the project and the width of the bar is the activity duration of one unit, which is uniform along all units;
- A horizontal line at any unit intersects with the activity bars at the planned start and finish times of the work in that unit;
- A vertical line at any date (time) shows the planned work that should be completed/started before and on that date;
- The slope of each activity represents its planned rate of progress and this is direct function of the number of crews involved in the activity. The slope of the last activity is the rate of delivery of the various units; and
- The finish time of the last unit in last activity represents the end date of the project.

It is possible also to add more details to the basic LOB schedule as shown in Figure 4.2. The modified figure shows interesting information, as follows:

- The number of crews employed in each task is graphically represented with each crew indicated by a different pattern. As such, the movement of the crews from one unit to the other is shown;
The three crews employed in activity (A) have different work assignments. Crew 1 works in four units (numbers 1, 4, 7, and 10) and leaves site on day 12. Similarly, Crew 2 works on four units (numbers 2, 5, 8, and 11) then leaves site on day 13. Crew 3, on the other hand, works on three units only (numbers 3, 6, and 9) and leaves site on day 11.

- Each crew moves to a new unit as soon as it finishes with the previous one, without interruption. As such, work continuity is maintained and the learning phenomenon can lead to some savings in cost and time;

- To prevent interference among the sequential tasks of the LOB schedule in case an activity is delayed, a buffer time may be introduced as shown, to act as a float time;

- When a slower activity is to follow a faster activity (e.g., C follows B), the activity C can be scheduled starting from unit 1, immediately following the predecessor B. Since interference can happen at unit 1, buffer time can be added to the start of unit 1;

- When a faster activity is to follow a slower activity (e.g., B follows A), the activity B needs to be scheduled starting at the top unit. If buffer time is to be added, it will be added at top. Notice that the start of unit 1 in activity B has been delayed to allow the task the proceed without interruption;
- Changing the production rate (slope) of any activity changes the project duration. Even speeding one task may prove to be harmful to the project when the conflict point changes from bottom to top; and
- If speeding an activity or relaxing it may result in a delay in the project, a good scheduling strategy is to schedule the activities as parallel as possible to each other and also parallel to a desired project delivery.

4.3.2 LOB Calculations

The objective of using LOB is to achieve a resource-balanced schedule by determining the suitable crew size and number of crews to employ in each repetitive activity. This is done such that: (1) the units are delivered with a rate that meets a pre-specified deadline; (2) the logical CPM network of each unit is respected; and (3) crews’ work continuity is maintained. The analysis also involves determining the start and finish times of all activities in all units and the crews’ assignments.

The CPM-LOB formulation that achieves the above objective involves four main issues, which are discussed in the next sections:

- Crew synchronization and work continuity equation;
- Computation of a project delivery rate that meets a given deadline duration;
- Calculating resource needs for critical and non-critical activities; and
- Drawing the LOB schedule.

Crew synchronization

A simple relationship between the duration taken by a crew in one unit \((D)\) and the number of crews \((C)\) to employ in a repetitive activity can be derived from the illustration in Figure 4.3. In this figure, we have a 5-unit activity and 3 crews to use. Only one crew is assumed to work in a single unit and the crew spends time \((D)\) on the unit before moving to another unit.
Having 3 crews available for this activity, it is possible to schedule their movements in and out of each unit, as shown in the figure, so that they are not interrupted and the work progresses at a rate \((R) \). For that work synchronization to happen, the following simple relationship applies:

\[
\text{Number of Crews (C)} = D \times R
\]

(4.1)

In the example shown, \(C = 3; \ D = 3 \) days; then, \(R \) becomes 1 unit/day, according to Equation 4.1. Therefore, it is possible to achieve work continuity given any change in the number of crews \((C) \) or crew formation (affects \(D \)) by adjusting the rate of progress \((R) \). For example, if 4 crews become available, we can apply the same Equation 4.1 to determine a faster progress rate of 1.25 units/day.
Driving the relationship of Equation 4.1 is simple. By enlarging part of Figure 4.4 and dividing the duration \((D)\) among the \((C)\) crews, the slope of the shaded triangle in Figure 4.4 becomes:

\[
R = 1 / (D / C)
\] (4.2)

and the time \(D/C\) becomes:

\[
D / C = 1 / R
\] (4.3)

Both equations lead to our formulation of \(C = D \times R\). Equation 4.3 also means that work continuity is achieved by shifting the start of each unit from its previous one by a time \(D/C\) or \(1/R\). This shift also has another practical meaning. Since each crew has part of its duration non-shared with other crews, the chance of work delay is reduced when two crews need the same equipment, or other resource, such as a crane on site.

Meeting a deadline duration

A basic objective in CPM-LOB calculation is to meet a given deadline for finishing a number of \((n)\) repetitive units; each has its own CPM network of component activities. Using the illustration in Figure 4.5, it is possible to formulate a strategy for meeting the deadline by calculating a desired rate of delivery \((R_d)\) for the units, as follows:

\[
R_d = (n - 1) / (T_L - T_1)
\] (4.4)
where, T_L is the deadline duration of the project and T_i is the CPM duration of the first unit. The delivery rate determined from Equation 4.4 is the minimum rate required to meet the desired deadline. Any higher rate can expectedly produce shorter project duration, however, more crews may need to be used and the schedule can be more costly.

Calculating resource needs

Once a minimum delivery rate (R_d) is calculated, it is desirable to enforce this rate on the schedule of the repetitive activities to determine the resources needed to complete the project on time. Equation 4.1, therefore, needs to be applied particularly to the critical activities, which are the sequential tasks that take the longest path in the CPM network of each unit. Non-critical activities, on the other hand, have float (TF) times and as such, we can afford to relax them according to their float times to reduce cost. It is, therefore, possible to modify Equation 4.4 and generalize it to determine a desired rate (R_i) for any repetitive task (i), as follows:

$$R_i = \frac{(n - 1)}{(T_L - T_i)} + TF_i$$ (4.5)

The physical meaning of Equation 4.5 is illustrated in Figure 4.6. In this figure, a 5-unit project is shown with each unit consisting of a simple four-activity network. Three of the four activities A, B, and C are sequential and each has 5-days duration. The fourth activity D runs parallel to B and has a duration of 2 days only. Accordingly, A, B, and C are critical activities while activity D is non-critical with Total Float (TF) of 3 days. As shown in Figure 4.6, the slopes of activities A, B, and C are the same and are steep up. The slope of activity (D), on the other hand, has been relaxed by simply starting unit 1 of task D as early as possible while starting the last unit as late as possible (notice the difference in the CPM networks of the first and the last units). In this manner, simple analysis of the slope of activity D in the figure leads us to the formulation of Equation 4.5. Using this approach, the relaxation of non-critical activities can be performed without violating any logical relationships or crew work continuity requirements.
With the desired rates calculated for the individual activities, a generalized form of Equation 4.1 can be used to determine the necessary number of crews \(C_i \) to use in each activity \(i \), as follows:

\[
C_i = D_i \times R_i
\]

(4.6)

Another important consideration is that, in most cases, the number of crews calculated using Equation 4.6 is not an integer value. Since a fraction of a crew is not possible, the number of crews \(C_i \)'s has to be rounded up to determine the actual number of crews \(C_{ai} \)'s. As a consequence, the actual rates of progress in the activities \(R_{ai} \)'s need to be adjusted, as follows:

\[
C_{ai} = \text{Round Up} \ (C_i)
\]

(4.7)

\[
R_{ai} = C_{ai} / D_i
\]

(4.8)

Equations 4.5 to 4.8, therefore, become the basis of integrated CPM-LOB calculations.
Drawing the LOB Schedule

A LOB schedule becomes simple to draw when all activities run with an exactly similar rate (i.e., activities run parallel to each other). However, due to the rounding of number of crews in Equation 4.7, the activities’ actual rates (R_{ai})s calculated using Equation 4.8 will not be parallel. Drawing the LOB schedule as such requires extra care as conflict points, either at the top unit or at the first unit, will be introduced due to the difference in progress rates from one activity to the other. As explained earlier, sometimes speeding an activity will cause a net delay in the whole project, if work continuity is to be maintained. Therefore, some non-critical activities may end up being delayed even in some situations violating the logical relationships or becomes critical themselves. Also, in some situations, the end schedule may slightly extend beyond the deadline. In this case, a simple approach to use is to re-schedule the project with a deadline duration that is slightly (one or two days) shorter than originally desired.

To draw the LOB schedule using the activities actual rates (R_{ai})s, we need to proceed in a forward path, following the logical relationships in the CPM network. When an activity is considered, its predecessors are first examined to identify their largest finish times, which are then considered as a boundary on the start of the current activity. Drawing the schedule by hand is simple when the network is small and can be done with varying levels of detail as shown in Figures 4.1 and 4.2.

Example 4.1

The activities involved in the construction of one kilometer of a pipeline are given together with their estimated durations in the table below. The project consists of 10 similar kilometers. Calculate the number of crews needed for each activity if the deadline for completing the project is 40 days and draw the LOB schedule. Assume one-day buffer time between activities.
Table 4.1: Data for Example 4.1

<table>
<thead>
<tr>
<th>Activity no.</th>
<th>Activity name</th>
<th>Duration (days)</th>
<th>Preceding activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Locate and clear</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Excavate</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>String pipe</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Lay pipe</td>
<td>4</td>
<td>2,3</td>
</tr>
<tr>
<td>5</td>
<td>Pressure test</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Backfill</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Solution

Figure 4.7 shows the CPM calculations for a single unit of the project. In this step, we determine the duration of a single unit and identify the critical path.
Note that the one-day buffer time is set as a lag between activities.

\[T_I = 15 \text{ day} \quad T_L = 40 \text{ day} \quad N = 10 \text{ units} \]

\[R_i = (n-1) / \frac{T_L - T_I}{T_i} + TF_i = 9 / (25 + TF_i) \]
Table 4.2: LOB calculations for Example 4.1

<table>
<thead>
<tr>
<th>Activity</th>
<th>Duration D_i</th>
<th>Total Float</th>
<th>$R_i = 4 / (25 + TF_i)$</th>
<th>$C_i = D_i \times R_i$</th>
<th>$C_{all} = \text{Round up } C_i$</th>
<th>$R_{all} = C_{all} / D_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.36</td>
<td>0.36</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0.36</td>
<td>1.08</td>
<td>2</td>
<td>0.667</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0.333</td>
<td>0.333</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0.36</td>
<td>1.44</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0.36</td>
<td>0.36</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>0</td>
<td>0.36</td>
<td>0.72</td>
<td>1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Figure 4.8: LOB for Example 4.1
4.4 Exercises

1. The construction of a housing project involves the activities given in the following table. The contract is for the construction of twelve houses in 60 days. The man-hours for each activity and the crew size/house are also given. Prepare an LOB schedule for the contract. Assume a minimum buffer time of one day and six 8-hour days per week. What is the overall project duration and when will the first team of roof leave the site?

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
<th>Predecessors</th>
<th>Man-hours</th>
<th>Team Size / Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Substructure</td>
<td>-</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>Superstructure</td>
<td>10</td>
<td>200</td>
<td>8</td>
</tr>
<tr>
<td>30</td>
<td>Roof</td>
<td>20</td>
<td>60</td>
<td>4</td>
</tr>
<tr>
<td>40</td>
<td>Carpenter</td>
<td>30</td>
<td>90</td>
<td>6</td>
</tr>
<tr>
<td>50</td>
<td>Plumber</td>
<td>30</td>
<td>45</td>
<td>3</td>
</tr>
<tr>
<td>60</td>
<td>Electrician</td>
<td>30</td>
<td>40</td>
<td>3</td>
</tr>
<tr>
<td>70</td>
<td>Plaster</td>
<td>40, 50, 60</td>
<td>120</td>
<td>8</td>
</tr>
<tr>
<td>80</td>
<td>Final fix</td>
<td>70</td>
<td>350</td>
<td>24</td>
</tr>
</tbody>
</table>

2. The following network diagram represents the activities involved in a single house. Each activity shows the man-hours needed and the number of crew members. Assume 8 working hours per day and one-day buffer time between activities.

If you are to construct these tasks for 5 houses in 24 days, calculate the number of crews that need to be involved in each activity. Draw the schedule and define the day numbers in which each crew enters and leaves the site.
3. The construction plan for a house is as follows, with activities durations in days:

a. Calculate a weekly target rate to be used for scheduling a project of 30 repetitive houses, if all crews are working five 8-hour days per week and the project has to be delivered in 85 days.

b. Given a desired target rate of four units per week, what is the number of crews to be employed in activity B.

c. Using the same number of crews obtained in (b), activity B has to be speed-up to a target rate of 5 units per week. Calculate how much time a crew needs to cut from the duration of each unit. Work continuity and crew synchronization has to be maintained.

4. The activities involved in the construction of one kilometer of a pipeline are given together with their estimated durations in the table below. Each of the given activities will be done using a separate gang. The project consists of 20 similar kilometers. Construct the project summary diagram using the precedence notations, and state the critical activities.

<table>
<thead>
<tr>
<th>Activity no.</th>
<th>Activity name</th>
<th>Duration (weeks)</th>
<th>Preceding activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Locate and clear</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Excavate</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>String pipe</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Lay pipe</td>
<td>4</td>
<td>2,3</td>
</tr>
<tr>
<td>5</td>
<td>Pressure test</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Backfill</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>